The Difluorodimethylphosphorus(v) Cation $[Me_2PF_2]^+$

By Morley Brownstein and Reinhard Schmutzler*

(Lehrstuhl B für Anorganische Chemie, Technische Universität, Pockelsstrasse 4, 33 Braunschweig, Germany)

Summary Complexes of Me₂PF₃ with PF₅ or AsF₅ were shown to have the structure $[Me_2PF_2]^+[MF_6]^-$ in MeCN solution; n.m.r. data for the series [Me₂PF₂]+, Me₂PF₃ and $[Me_2PF_4]^-$ have been compared.

COMPLEXES between fluorophosphoranes and Lewis acids have been reported by Muetterties and Mahler¹ but evidence on the structures of the complexes was not presented, although it was speculated that, at least in the solid state, the complexes were ionic, e,g. $[RPF_3]^+$ (or $[R_2PF_2]^+$) $[MF_n]^-$. ¹⁹F n.m.r. spectroscopy has been of great value in elucidating the nature of fluoro-complexes with Lewis acid fluorides, both ionic² and covalent.³ The wealth of spin 1/2 nuclei in fluorophosphoranes makes n.m.r. especially useful and allowed confirmation of the [Me₂PF₂]⁺ ion in Me₂PF₃·PF₅ and Me₂PF₃·AsF₅.

Complexes were prepared by direct combination, either of the neat constituent compounds, or in acetonitrile solvent. At room temperature ¹⁹F resonances from the [Me₂PF₂]⁺ cation were broad, due to temperature-dependent exchange processes of the type previously encountered in the n.m.r. investigation of fluoro cations.^{2b,4} The ¹⁹F resonances due to the anions $[PF_6]^-$ and $[AsF_6]^-$ (the latter appearing as a fully resolved quartet⁵) were observed in the room temperature spectra. N.m.r. data for the $[Me_2PF_2]^+$ cation are summarized in the Table.

¹ E. L. Muetterties and W. Mahler, Inorg. Chem., 1965, 4, 119.
² (a) J. K. Ruff, Inorg. Chem., 1966, 5, 1791; (b) M. Azeem, M. Brownstein, and R. J. Gillespie, Canad. J. Chem., 1969, 47, 4159;
(c) R. J. Gillespie, B. Landa, and G. J. Schrobilgen, Chem. Comm., 1971, 1543.
³ P. A. W. Dean and R. J. Gillespie, J. Amer. Chem. Soc., 1969, 91, 7260.
⁴ M. Brownstein and R. J. Gillespie, J.C.S. (Dalton), 1973, 67; M. Brownstein and J. Shamir, Canad. J. Chem., 1972, 50, 3409.
⁵ E. L. Muetterties and W. D. Phillips, J. Amer. Chem. Soc., 1959, 81, 1084.
⁶ W. Gradan and R. D. Chem. and R. Schamtzfort, Chem. Comm. 1071, 1464.

- ⁶ W. Stadelmann, O. Stelzer, and R. Schmutzler, Chem. Comm., 1971, 1456; Z. anorg. Chem., 1971, 385, 142.

7 J. F. Nixon and R. Schmutzler, Spectrochim. Acta, 1964, 20, 1835; E. L. Muetterties, W. Mahler, and R. Schmutzler, Inorg. Chem., 1963, 2, 613.

⁸ H. Dreeskamp and K. Hildenbrand, Z. Naturforsch., 1971, 26b, 269.

N.m.r. data for the series, [Me₂PF₂]+, Me₂PF₃, and [Me₂PF₄]^{-,6} are now available (for data on Me₂PF₃ and $[Me_2PF_4]^-$, see refs 6 and 7). A smooth increase in δ_P by increments of 147 and 145 p.p.m., respectively in going from $[Me_2PF_2]^+$ via Me_2PF_3 to $[Me_2PF_4]^-$ ($\delta_P = -155$, -8.0, and +137.0 p.p.m., respectively) is noteworthy.

TABLE

N.m.r.	parameters for the	
	$[Me_2PF_2]+[PF_6]^{-1}$	$[Me_2PF_2]^+[AsF_6]^-$
δ(CFCl ₃)	+ 83∙5 p.p.m.	+8 3·3 p.p.m.
¹ ĴР-F	1145 Hz	1147 Hz
³∫ғ_н	11 Hz	
δ(Me ₄ Si)	-2 ^{.6} p.p.m.	-2.7 p.p.m.
²∫г_п	15 Hz	15 Hz
$\delta(H_3PO_4)$	—155 p.p.m.	

^a All n.m.r. measurements were conducted on saturated solutions of the complexes in acetonitrile.

Confirmation of the existence of [Me₂PF₂]+, as well as $[Me_2PF_4]^-$ suggests that fluoride ion transfer might contribute to intermolecular fluorine exchange in Me₂PF₃.⁸ It emphasizes the necessity of eliminating both fluoride ion acceptors as well as donors when studying exchange processes in fluorophosphoranes.

We thank the Alexander von Humboldt-Stiftung for a Fellowship (to M.B.) and the Deutsche Forschungsgemeinschaft for support.

(Received, 18th September 1974; Com. 1176.)